13,445 research outputs found

    Conductivity of suspended and non-suspended graphene at finite gate voltage

    Full text link
    We compute the DC and the optical conductivity of graphene for finite values of the chemical potential by taking into account the effect of disorder, due to mid-gap states (unitary scatterers) and charged impurities, and the effect of both optical and acoustic phonons. The disorder due to mid-gap states is treated in the coherent potential approximation (CPA, a self-consistent approach based on the Dyson equation), whereas that due to charged impurities is also treated via the Dyson equation, with the self-energy computed using second order perturbation theory. The effect of the phonons is also included via the Dyson equation, with the self energy computed using first order perturbation theory. The self-energy due to phonons is computed both using the bare electronic Green's function and the full electronic Green's function, although we show that the effect of disorder on the phonon-propagator is negligible. Our results are in qualitative agreement with recent experiments. Quantitative agreement could be obtained if one assumes water molelcules under the graphene substrate. We also comment on the electron-hole asymmetry observed in the DC conductivity of suspended graphene.Comment: 13 pages, 11 figure

    Kondo Quantum Criticality of Magnetic Adatoms in Graphene

    Full text link
    We examine the exchange Hamiltonian for magnetic adatoms in graphene with localized inner shell states. On symmetry grounds, we predict the existence of a class of orbitals that lead to a distinct class of quantum critical points in graphene, where the Kondo temperature scales as TKJJc1/3T_{K}\propto|J-J_{c}|^{1/3} near the critical coupling JcJ_{c}, and the local spin is effectively screened by a \emph{super-ohmic} bath. For this class, the RKKY interaction decays spatially with a fast power law 1/R7\sim1/R^{7}. Away from half filling, we show that the exchange coupling in graphene can be controlled across the quantum critical region by gating. We propose that the vicinity of the Kondo quantum critical point can be directly accessed with scanning tunneling probes and gating.Comment: 4.1 pages, 3 figures. Added erratum correcting exponent nu=1/3. All the other results remain vali

    A Note in the Skyrme Model with Higher Derivative Terms

    Full text link
    Another stabilizer term is used in the classical Hamiltonian of the Skyrme Model that permits in a much simple way the generalization of the higher-order terms in the pion derivative field. Improved numerical results are obtained.Comment: Latex. Figure not include; available upon request. 7 pages, report

    Particle Creation by a Moving Boundary with Robin Boundary Condition

    Full text link
    We consider a massless scalar field in 1+1 dimensions satisfying a Robin boundary condition (BC) at a non-relativistic moving boundary. We derive a Bogoliubov transformation between input and output bosonic field operators, which allows us to calculate the spectral distribution of created particles. The cases of Dirichlet and Neumann BC may be obtained from our result as limiting cases. These two limits yield the same spectrum, which turns out to be an upper bound for the spectra derived for Robin BC. We show that the particle emission effect can be considerably reduced (with respect to the Dirichlet/Neumann case) by selecting a particular value for the oscillation frequency of the boundary position

    A Tale of Two Theories: Quantum Griffiths Effects in Metallic Systems

    Full text link
    We show that two apparently contradictory theories on the existence of Griffiths-McCoy singularities in magnetic metallic systems [1,2] are in fact mathematically equivalent. We discuss the generic phase diagram of the problem and show that there is a non-universal crossover temperature range T* < T < W where power law behavior (Griffiths-McCoy behavior) is expect. For T<T* power law behavior ceases to exist due to the destruction of quantum effects generated by the dissipation in the metallic environment. We show that T* is an analogue of the Kondo temperature and is controlled by non-universal couplings.Comment: 4 pages, 2 figure

    Finite temperature behavior of strongly disordered quantum magnets coupled to a dissipative bath

    Full text link
    We study the effect of dissipation on the infinite randomness fixed point and the Griffiths-McCoy singularities of random transverse Ising systems in chains, ladders and in two-dimensions. A strong disorder renormalization group scheme is presented that allows the computation of the finite temperature behavior of the magnetic susceptibility and the spin specific heat. In the case of Ohmic dissipation the susceptibility displays a crossover from Griffiths-McCoy behavior (with a continuously varying dynamical exponent) to classical Curie behavior at some temperature TT^*. The specific heat displays Griffiths-McCoy singularities over the whole temperature range. For super-Ohmic dissipation we find an infinite randomness fixed point within the same universality class as the transverse Ising system without dissipation. In this case the phase diagram and the parameter dependence of the dynamical exponent in the Griffiths-McCoy phase can be determined analytically.Comment: 23 pages, 12 figure

    Quantum radiation in a plane cavity with moving mirrors

    Full text link
    We consider the electromagnetic vacuum field inside a perfect plane cavity with moving mirrors, in the nonrelativistic approximation. We show that low frequency photons are generated in pairs that satisfy simple properties associated to the plane geometry. We calculate the photon generation rates for each polarization as functions of the mechanical frequency by two independent methods: on one hand from the analysis of the boundary conditions for moving mirrors and with the aid of Green functions; and on the other hand by an effective Hamiltonian approach. The angular and frequency spectra are discrete, and emission rates for each allowed angular direction are obtained. We discuss the dependence of the generation rates on the cavity length and show that the effect is enhanced for short cavity lengths. We also compute the dissipative force on the moving mirrors and show that it is related to the total radiated energy as predicted by energy conservation.Comment: 17 pages, 1 figure, published in Physical Review
    corecore